STRINGSTRING
ST6GALNAC6 ST6GALNAC6 SLC35A1 SLC35A1 ST6GALNAC1 ST6GALNAC1 NANS NANS ST6GALNAC2 ST6GALNAC2 ITGA2B ITGA2B NPL NPL ST6GALNAC3 ST6GALNAC3 ST6GALNAC4 ST6GALNAC4 SLC17A5 SLC17A5 ST3GAL1 ST3GAL1 ST6GALNAC5 ST6GALNAC5 GNE GNE ST3GAL2 ST3GAL2 NEU1 NEU1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ST6GALNAC6Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6; Alpha-2,6-sialyltransferase involved in the synthesis of alpha-series gangliosides. Has activity toward GD1a, GT1b and GM1b. Has no activity toward glycoproteins. Responsible for the biosynthesis of DSGG (disialylgalactosylgloboside) from MSGG (monosialylgalactosylgloboside) in normal and malignant kidney. Participates in the synthesis of disialyl Lewis a (Le(a)). (374 aa)
SLC35A1CMP-sialic acid transporter; Transports CMP-sialic acid from the cytosol into Golgi vesicles where glycosyltransferases function. Efficient CMP-sialic acid uptake depends on the presence of free CMP inside the vesicles, suggesting the proteins functions as an antiporter. Binds both CMP-sialic acid and free CMP, but has higher affinity for free CMP (By similarity). (337 aa)
ST6GALNAC1ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 1. (600 aa)
NANSSialic acid synthase; Produces N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy- D-glycero-D-galacto-nononic acid (KDN). Can also use N- acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively. (359 aa)
ST6GALNAC2Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2; Catalyzes the transfer of N-acetylneuraminyl groups onto glycan chains in glycoproteins. (374 aa)
ITGA2BIntegrin alpha-IIb light chain, form 1; Integrin alpha-IIb/beta-3 is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. It recognizes the sequence R-G-D in a wide array of ligands. It recognizes the sequence H-H-L-G-G-G-A-K-Q-A-G-D-V in fibrinogen gamma chain. Following activation integrin alpha-IIb/beta-3 brings about platelet/platelet interaction through binding of soluble fibrinogen. This step leads to rapid platelet aggregation which physically plugs ruptured endothelial cell surface. (1039 aa)
NPLN-acetylneuraminate lyase; Catalyzes the cleavage of N-acetylneuraminic acid (sialic acid) to form pyruvate and N-acetylmannosamine via a Schiff base intermediate. It prevents sialic acids from being recycled and returning to the cell surface. Involved in the N-glycolylneuraminic acid (Neu5Gc) degradation pathway. Although human is not able to catalyze formation of Neu5Gc due to the inactive CMAHP enzyme, Neu5Gc is present in food and must be degraded (By similarity). (320 aa)
ST6GALNAC3Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 3; Involved in the biosynthesis of ganglioside GD1A from GM1B. Transfers CMP-NeuAc with an alpha-2,6-linkage to GalNAc residue on NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc of glycoproteins and glycolipids. ST6GalNAcIII prefers glycolipids to glycoproteins (By similarity). (305 aa)
ST6GALNAC4N-acetylgalactosaminide alpha-2,6-sialyltransferase (sialyltransferase 7D); Involved in the biosynthesis of ganglioside GD1A from GM1B. Transfers CMP-NeuAc with an alpha-2,6-linkage to GalNAc residue on NeuAc-alpha-2,3-Gal-beta-1,3-GalNAc of glycoproteins and glycolipids. Prefers glycoproteins to glycolipids (By similarity). (302 aa)
SLC17A5Sialin; Transports glucuronic acid and free sialic acid out of the lysosome after it is cleaved from sialoglycoconjugates undergoing degradation, this is required for normal CNS myelination. Mediates aspartate and glutamate membrane potential-dependent uptake into synaptic vesicles and synaptic-like microvesicles. Also functions as an electrogenic 2NO(3)(-)/H(+) cotransporter in the plasma membrane of salivary gland acinar cells, mediating the physiological nitrate efflux, 25% of the circulating nitrate ions is typically removed and secreted in saliva. Belongs to the major facilitator [...] (495 aa)
ST3GAL1CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 1; Responsible for the synthesis of the sequence NeuAc-alpha- 2,3-Gal-beta-1,3-GalNAc- found on sugar chains O-linked to Thr or Ser and also as a terminal sequence on certain gangliosides. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family. (340 aa)
ST6GALNAC5Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5; Involved in the biosynthesis of ganglioside GD1a from GM1b. It exhibits higher activity with glycolipids than with glycoproteins (By similarity). (336 aa)
GNEBifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase; Regulates and initiates biosynthesis of N-acetylneuraminic acid (NeuAc), a precursor of sialic acids. Plays an essential role in early development (By similarity). Required for normal sialylation in hematopoietic cells. Sialylation is implicated in cell adhesion, signal transduction, tumorigenicity and metastatic behavior of malignant cells; In the C-terminal section; belongs to the ROK (NagC/XylR) family. (753 aa)
ST3GAL2CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 2; Responsible for the synthesis of the sequence NeuAc-alpha- 2,3-Gal-beta-1,3-GalNAc- found in terminal carbohydrate groups of certain glycoproteins, oligosaccharides and glycolipids. SIAT4A and SIAT4B sialylate the same acceptor substrates but exhibit different Km values; Belongs to the glycosyltransferase 29 family. (350 aa)
NEU1Sialidase-1; Catalyzes the removal of sialic acid (N-acetylneuraminic acid) moieties from glycoproteins and glycolipids. To be active, it is strictly dependent on its presence in the multienzyme complex. Appears to have a preference for alpha 2-3 and alpha 2-6 sialyl linkage. (415 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]